Search results
Results From The WOW.Com Content Network
The material stiffness properties of these elements are then, through linear algebra, compiled into a single matrix equation which governs the behaviour of the entire idealized structure. The structure’s unknown displacements and forces can then be determined by solving this equation.
The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.
The origin of finite method can be traced to the matrix analysis of structures [1] [2] where the concept of a displacement or stiffness matrix approach was introduced. Finite element concepts were developed based on engineering methods in 1950s.
The finite element method has been the tool of choice since civil engineer Ray W. Clough in 1940 derived the stiffness matrix of a 3-node triangular finite element (and coined the name). The precursors of FEM were elements built-up from bars (Hrennikoff, Argyris, Turner) and a conceptual variation approach suggested by R. Courant.
Mathematically, this requires a stiffness matrix to have full rank. A statically indeterminate structure can only be analyzed by including further information like material properties and deflections. Numerically, this can be achieved by using matrix structural analyses, finite element method (FEM) or the moment distribution method (Hardy Cross) .
Some types of finite element methods (conforming, nonconforming, mixed finite element methods) are particular cases of the gradient discretization method (GDM). Hence the convergence properties of the GDM, which are established for a series of problems (linear and nonlinear elliptic problems, linear, nonlinear, and degenerate parabolic problems ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
K is the symmetric bearing or seal stiffness matrix; N is the gyroscopic matrix of deflection for inclusion of e.g., centrifugal elements; q(t) is the generalized coordinates of the rotor in inertial coordinates; f(t) is a forcing function, usually including the unbalance. The gyroscopic matrix G is proportional to spin speed Ω.