Search results
Results From The WOW.Com Content Network
Blood–gas partition coefficient – Measure of solubility of general anaesthetics in blood; Cheminformatics – Computational chemistry Lipinski's rule of five – Rule of thumb to predict if a chemical compound is likely to be an orally active drug; Lipophilic efficiency – Parameter used in drug design
A well-known example of a positive azeotrope is an ethanol–water mixture (obtained by fermentation of sugars) consisting of 95.63% ethanol and 4.37% water (by mass), which boils at 78.2 °C. [10] Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. [11]
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The addition of a material separation agent, such as benzene to an ethanol/water mixture, changes the molecular interactions and eliminates the azeotrope. Added in the liquid phase, the new component can alter the activity coefficient of various compounds in different ways thus altering a mixture's relative volatility.
Partition coefficients are very important in pharmacology because they determine the extent to which a substance can pass from the blood (an aqueous solution) through a cell wall which is like an organic solvent. They are usually measured using water and octanol as the two solvents, yielding the so-called octanol-water partition coefficient.
The equilibrium is shifted in the direction of the substance that is preferentially stabilized. Stabilization of the reactant or product can occur through any of the different non-covalent interactions with the solvent such as H-bonding, dipole-dipole interactions, van der Waals interactions etc.
Le Chatelier–Braun principle analyzes the qualitative behaviour of a thermodynamic system when a particular one of its externally controlled state variables, say , changes by an amount , the 'driving change', causing a change , the 'response of prime interest', in its conjugate state variable , all other externally controlled state variables remaining constant.
Vapor pressure [a] or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate.