When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tutte matrix - Wikipedia

    en.wikipedia.org/wiki/Tutte_matrix

    In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries

  3. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    The problem of finding a matching with maximum weight in a weighted graph is called the maximum weight matching problem, and its restriction to bipartite graphs is called the assignment problem. If each vertex can be matched to several vertices at once, then this is a generalized assignment problem .

  4. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...

  5. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G with edges E and vertices V, a perfect matching in G is a subset M of E, such that every vertex in V is adjacent to exactly one edge in M. The adjacency matrix of a perfect matching is a symmetric permutation matrix.

  6. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.

  7. Matching in hypergraphs - Wikipedia

    en.wikipedia.org/wiki/Matching_in_hypergraphs

    A matching M is called perfect if every vertex v in V is contained in exactly one hyperedge of M. This is the natural extension of the notion of perfect matching in a graph. A fractional matching M is called perfect if for every vertex v in V, the sum of fractions of hyperedges in M containing v is exactly 1.

  8. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...

  9. Blossom algorithm - Wikipedia

    en.wikipedia.org/wiki/Blossom_algorithm

    The matching is constructed by iteratively improving an initial empty matching along augmenting paths in the graph. Unlike bipartite matching, the key new idea is that an odd-length cycle in the graph (blossom) is contracted to a single vertex, with the search continuing iteratively in the contracted graph.