When.com Web Search

  1. Ads

    related to: multiplying 4 digits by numbers pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    It requires memorization of the multiplication table for single digits. This is the usual algorithm for multiplying larger numbers by hand in base 10. A person doing long multiplication on paper will write down all the products and then add them together; an abacus-user will sum the products as soon as each one is computed.

  4. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Some of the algorithms Trachtenberg developed are ones for general multiplication, division and addition. Also, the Trachtenberg system includes some specialised methods for multiplying small numbers between 5 and 13. The section on addition demonstrates an effective method of checking calculations that can also be applied to multiplication.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]

  6. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    For truncation, a certain number of leftmost digits are kept and remaining digits are discarded or replaced by zeros. For example, the number π has an infinite number of digits starting with 3.14159.... If this number is truncated to 4 decimal places, the result is 3.141.

  7. Lunar arithmetic - Wikipedia

    en.wikipedia.org/wiki/Lunar_arithmetic

    976 + 348 ---- 978 (adding digits column-wise) 976 × 348 ---- 876 (multiplying the digits of 976 by 8) 444 (multiplying the digits of 976 by 4) 333 (multiplying the digits of 976 by 3) ----- 34876 (adding digits column-wise) The concept of lunar arithmetic was proposed by David Applegate, Marc LeBrun, and Neil Sloane. [3]