When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as =, where G is the gravitational constant, M is the object mass, and c is the speed of light.

  3. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    It turns out that curves of constant r-coordinate in Schwarzschild coordinates always look like hyperbolas bounded by a pair of event horizons at 45 degrees, while lines of constant t-coordinate in Schwarzschild coordinates always look like straight lines at various angles passing through the center of the diagram.

  4. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    In these coordinates, the horizon is the black hole horizon (nothing can come out). The diagram for u-r coordinates is the same diagram turned upside down and with u and v interchanged on the diagram. In that case the horizon is the white hole horizon, which matter and light can come out of, but nothing can go in.

  5. File:Kruskal diagram of Schwarzschild chart.svg - Wikipedia

    en.wikipedia.org/wiki/File:Kruskal_diagram_of...

    This diagram was created with MATLAB. The file size of this SVG image may be irrationally large because its text has been converted to paths inhibiting translations. Licensing

  6. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    Since the Schwarzschild metric is expected to be valid only for those radii larger than the radius R of the gravitating body, there is no problem as long as R > r s. For ordinary stars and planets this is always the case. For example, the radius of the Sun is approximately 700 000 km, while its Schwarzschild radius is only 3 km.

  7. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. [1] Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

  8. Ergosphere - Wikipedia

    en.wikipedia.org/wiki/Ergosphere

    The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal) radius of the event horizon which can be as little as half the Schwarzschild radius for a maximally rotating black hole. [2]

  9. Schwarzschild coordinates - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_coordinates

    In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres.In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres.