Search results
Results From The WOW.Com Content Network
Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.
The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.
if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1. For example, if p=0.7, then q must be 0.3. In other words, if the allele frequency of A equals 70%, the remaining 30% of the alleles must be a, because together they equal 100%. [5]
1. Introduce the reference of a SNP of interest, as an example: rs429358, in a database (dbSNP or other). 2. Find MAF/MinorAlleleCount link. MAF/MinorAlleleCount: C=0.1506/754 (1000 Genomes, where number of genomes sampled = N = 2504); [4] where C is the minor allele for that particular locus; 0.1506 is the frequency of the C allele (MAF), i.e. 15% within the 1000 Genomes database; and 754 is ...
where p is the frequency of one allele and q is the frequency of the alternative allele, which necessarily sum to unity. Then, p 2 is the fraction of the population homozygous for the first allele, 2 pq is the fraction of heterozygotes, and q 2 is the fraction homozygous for the alternative allele.
The "base" allele frequencies of the example are those of the potential gamodeme: the frequency of A is p g = 0.75, while the frequency of a is q g = 0.25. [ White label " 1 " in the diagram.] Five example actual gamodemes are binomially sampled out of this base ( s = the number of samples = 5), and each sample is designated with an "index" k ...
For example, if the frequency p for allele A is 75% and the frequency q for allele B is 25%, then given unlimited time the probability A will ultimately become fixed in the population is 75% and the probability that B will become fixed is 25%.
Another example is plant self-incompatibility alleles. When two plants share the same incompatibility allele, they are unable to mate. Thus, a plant with a new (and therefore, rare) allele has more success at mating, and its allele spreads quickly through the population. [9] A similar example is the csd alleles of the honey bee. A larva that is ...