Search results
Results From The WOW.Com Content Network
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω( n ) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS ).
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758 Extravagant numbers
In an arithmetic progression, all the numbers have the same remainder when divided by the modulus; in this example, the remainder is 3. Because both the modulus 9 and the remainder 3 are multiples of 3, so is every element in the sequence. Therefore, this progression contains only one prime number, 3 itself. In general, the infinite progression
For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4) .
7 is the only number D for which the equation 2 n − D = x 2 has more than two solutions for n and x natural. In particular, the equation 2 n − 7 = x 2 is known as the Ramanujan–Nagell equation. 7 is one of seven numbers in the positive definite quadratic integer matrix representative of all odd numbers: {1, 3, 5, 7, 11, 15, 33}. [19] [20]
Every composite number can be written as the product of two or more (not necessarily distinct) primes. [2] For example, the composite number 299 can be written as 13 × 23, and the composite number 360 can be written as 2 3 × 3 2 × 5; furthermore, this representation is unique up to the order of the factors.
From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1. To see this, suppose that 0 ≤ i < j and F i and F j have a common factor a > 1. Then a divides both and F j; hence a divides their difference, 2.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [ 1 ] [ 2 ] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89 .