When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normal mode - Wikipedia

    en.wikipedia.org/wiki/Normal_mode

    Physically, standing waves are formed by the interference (superposition) of waves and their reflections (although one may also say the opposite; that a moving wave is a superposition of standing waves). The geometric shape of the medium determines what would be the interference pattern, thus determines the f(x, y, z) form of

  3. Standing wave - Wikipedia

    en.wikipedia.org/wiki/Standing_wave

    Standing waves were first described scientifically by Michael Faraday in 1831. Faraday observed standing waves on the surface of a liquid in a vibrating container. [1] [2] Franz Melde coined the term "standing wave" (German: stehende Welle or Stehwelle) around 1860 and demonstrated the phenomenon in his classic experiment with vibrating strings.

  4. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.

  5. Vibrations of a circular membrane - Wikipedia

    en.wikipedia.org/wiki/Vibrations_of_a_circular...

    A number of modes are shown below together with their quantum numbers. The analogous wave functions of the hydrogen atom are also indicated as well as the associated angular frequencies ω m n = λ m n c = α m n a c = α m n c / a {\displaystyle \omega _{mn}=\lambda _{mn}c={\dfrac {\alpha _{mn}}{a}}c=\alpha _{mn}c/a} .

  6. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    The wavefunction itself is not stationary: It continually changes its overall complex phase factor, so as to form a standing wave. The oscillation frequency of the standing wave, multiplied by the Planck constant, is the energy of the state according to the Planck–Einstein relation.

  7. Clapotis - Wikipedia

    en.wikipedia.org/wiki/Clapotis

    Incoming wave (red) reflected at the wall produces the outgoing wave (blue), both being overlaid resulting in the clapotis (black). In hydrodynamics, a clapotis (from French for "lapping of water") is a non-breaking standing wave pattern, caused for example, by the reflection of a traveling surface wave train from a near vertical shoreline like a breakwater, seawall or steep cliff.

  8. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    Vibration and standing waves in a string, The fundamental and the first six overtones. The fundamental frequency, often referred to simply as the fundamental (abbreviated as f 0 or f 1), is defined as the lowest frequency of a periodic waveform. [1] In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial ...

  9. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for any state. Stationary states can also be described by a ...