When.com Web Search

  1. Ad

    related to: divisibility by 11 proof test a 1 pdf form download

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test for divisibility by D, where D ends in 1, 3, 7, or 9, the following method can be used. [12] Find any multiple of D ending in 9. (If D ends respectively in 1, 3, 7, or 9, then multiply by 9, 3, 7, or 1.) Then add 1 and divide by 10, denoting the result as m. Then a number N = 10t + q is divisible by D if and only if mq + t is divisible ...

  3. 1001 (number) - Wikipedia

    en.wikipedia.org/wiki/1001_(number)

    Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...

  4. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is known to have a special form. The Lucas test relies on the fact that the multiplicative order of a number a modulo n is n ...

  5. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Proof of Bertrand's postulate; Proof that the sum of the reciprocals of the primes diverges; Cramér's conjecture; Riemann hypothesis. Critical line theorem; Hilbert–Pólya conjecture; Generalized Riemann hypothesis; Mertens function, Mertens conjecture, Meissel–Mertens constant; De Bruijn–Newman constant; Dirichlet character; Dirichlet L ...

  6. Zsigmondy's theorem - Wikipedia

    en.wikipedia.org/wiki/Zsigmondy's_theorem

    In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if > > are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer <, with the following exceptions:

  7. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  8. Division lattice - Wikipedia

    en.wikipedia.org/wiki/Division_lattice

    The non-negative integers partially ordered by divisibility. The division lattice is an infinite complete bounded distributive lattice whose elements are the natural numbers ordered by divisibility. Its least element is 1, which divides all natural numbers, while its greatest element is 0, which is divisible by all natural numbers.

  9. Talk:Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Talk:Divisibility_rule

    6: an even number that passes the divisibility test for 3. 7: sum of all the digits is a multiple of 7. 5: successive subtraction of final two digits from all the other digits yields a multiple of 5. 12: an even number that passes the divisibility test for 5. Base 11 (a prime base, for comparison): 2: sum of all the digits is a multiple of 2.