When.com Web Search

  1. Ad

    related to: divisibility by 11 proof test a 1 pdf form printable

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test for divisibility by D, where D ends in 1, 3, 7, or 9, the following method can be used. [12] Find any multiple of D ending in 9. (If D ends respectively in 1, 3, 7, or 9, then multiply by 9, 3, 7, or 1.) Then add 1 and divide by 10, denoting the result as m. Then a number N = 10t + q is divisible by D if and only if mq + t is divisible ...

  3. 1001 (number) - Wikipedia

    en.wikipedia.org/wiki/1001_(number)

    Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...

  4. Sanity check - Wikipedia

    en.wikipedia.org/wiki/Sanity_check

    Dimensional analysis may be used as a sanity check of physical equations: the two sides of any equation must be commensurable or have the same dimensions. A person who has calculated the power output of a car to be 700 kJ may have omitted a factor, since the unit joules is a measure of energy, not power (energy per unit time).

  5. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Fermat primality test. Pseudoprime; Carmichael number; Euler pseudoprime; Euler–Jacobi pseudoprime; Fibonacci pseudoprime; Probable prime; Baillie–PSW primality test; Miller–Rabin primality test; Lucas–Lehmer primality test; Lucas–Lehmer test for Mersenne numbers; AKS primality test

  6. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  7. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is known to have a special form. The Lucas test relies on the fact that the multiplicative order of a number a modulo n is n ...

  8. Digit sum - Wikipedia

    en.wikipedia.org/wiki/Digit_sum

    Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.

  9. Zsigmondy's theorem - Wikipedia

    en.wikipedia.org/wiki/Zsigmondy's_theorem

    In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if > > are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer <, with the following exceptions: