When.com Web Search

  1. Ad

    related to: simple harmonic oscillator simulation formula calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.

  3. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...

  4. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  5. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action angles result from a type-2 canonical transformation where the generating function is Hamilton's characteristic function (not Hamilton's principal function ).Since the original Hamiltonian does not depend on time explicitly, the new Hamiltonian (,) is merely the old Hamiltonian (,) expressed in terms of the new canonical coordinates, which we denote as (the action angles, which are the ...

  6. Classical probability density - Wikipedia

    en.wikipedia.org/wiki/Classical_probability_density

    Though our starting example was the harmonic oscillator, all the math up to this point has been completely general for a particle subject to a conservative force. This formula can be generalized for any one-dimensional physical system by plugging in the corresponding potential energy function.

  7. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  8. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .

  9. Franck–Condon principle - Wikipedia

    en.wikipedia.org/wiki/Franck–Condon_principle

    In the semiclassical picture of vibrations (oscillations) of a simple harmonic oscillator, the necessary conditions can occur at the turning points, where the momentum is zero. Classically, the Franck–Condon principle is the approximation that an electronic transition is most likely to occur without changes in the positions of the nuclei in ...