Search results
Results From The WOW.Com Content Network
The problem of the simple harmonic oscillator occurs frequently in physics, because a mass at equilibrium under the influence of any conservative force, in the limit of small motions, behaves as a simple harmonic oscillator. A conservative force is one that is associated with a potential energy.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
Starting with the example used in the derivation above, the simple harmonic oscillator has the potential energy function = =, where k is the spring constant of the oscillator and ω = 2π/T is the natural angular frequency of the oscillator.
The quantization of a simple harmonic oscillator requires the lowest possible energy, or zero-point energy of such an oscillator to be = [5] Summing over all possible oscillators at all points in space gives an infinite quantity.
In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.
To see an example where Liouville's theorem does not apply, we can modify the equations of motion for the simple harmonic oscillator to account for the effects of friction or damping. Consider again the system of N {\displaystyle N} particles each in a 3 {\displaystyle 3} -dimensional isotropic harmonic potential, the Hamiltonian for which is ...
Therefore, the Lagrangian of a simple harmonic oscillator is isochronous. In the tautochrone problem, if the particle's position is parametrized by the arclength s(t) from the lowest point, the kinetic energy is then proportional to ˙, and the potential energy is proportional to the height h(s). One way the curve in the tautochrone problem can ...
In the semiclassical picture of vibrations (oscillations) of a simple harmonic oscillator, the necessary conditions can occur at the turning points, where the momentum is zero. Classically, the Franck–Condon principle is the approximation that an electronic transition is most likely to occur without changes in the positions of the nuclei in ...