Ad
related to: pid controller example problems and solutions
Search results
Results From The WOW.Com Content Network
A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...
Within modern distributed control systems and programmable logic controllers, it is much easier to prevent integral windup by either limiting the controller output, limiting the integral to produce feasible output, [5] or by using external reset feedback, which is a means of feeding back the selected output to the integral circuit of all ...
The Ziegler–Nichols tuning method is a heuristic method of tuning a PID controller.It was developed by John G. Ziegler and Nathaniel B. Nichols.It is performed by setting the I (integral) and D (derivative) gains to zero.
I suggest Astrom' PID Controllers Theory, Design and Tunning (1995, not sure if there is a newer edition) and, **much** more relevant and concise about this particular topic is O'Dwyer's Handbook of PI and PID Controller 3rd edition (2009). In fact, O'Dwyer's chapter 2 is entirely about different forms for PID controllers.
One example is the genetic algorithm for optimizing coefficients of a PID controller [2] or discrete-time optimal control. [3] Control design as regression problem of the first kind: MLC approximates a general nonlinear mapping from sensor signals to actuation commands, if the sensor signals and the optimal actuation command are known for every ...
The PID loop in this situation uses the feedback information to change the combined output to reduce the remaining difference between the process setpoint and the feedback value. Working together, the combined open-loop feed-forward controller and closed-loop PID controller can provide a more responsive control system in some situations.
An everyday example is the cruise control on a road vehicle; where external influences such as gradients cause speed changes (PV), and the driver also alters the desired set speed (SP). The automatic control algorithm restores the actual speed to the desired speed in the optimum way, without delay or overshoot, by altering the power output of ...
The associated more difficult control problem leads to a similar optimal controller of which only the controller parameters are different. [5] It is possible to compute the expected value of the cost function for the optimal gains, as well as any other set of stable gains. [12] The LQG controller is also used to control perturbed non-linear ...