Search results
Results From The WOW.Com Content Network
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
An example for an undirected Graph with a vertex r and its corresponding level structure For the concept in algebraic geometry, see level structure (algebraic geometry) In the mathematical subfield of graph theory a level structure of a rooted graph is a partition of the vertices into subsets that have the same distance from a given root vertex.
Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...
Sometimes graph grammar is used as a synonym for graph rewriting system, especially in the context of formal languages; the different wording is used to emphasize the goal of constructions, like the enumeration of all graphs from some starting graph, i.e. the generation of a graph language – instead of simply transforming a given state (host ...
Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...
Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :
The vertex set of an n-vertex graph may be identified with the integers from 1 to n, and using such an identification a canonical form of a graph may also be described as a permutation of its vertices. Canonical forms of a graph are also called canonical labelings, [4] and graph canonization is also sometimes known as graph canonicalization.
In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges (,) an -vertex graph can have such that it does not have a subgraph isomorphic to .