Search results
Results From The WOW.Com Content Network
The observed response to selection leads to an estimate of the narrow-sense heritability (called realized heritability). This is the principle underlying artificial selection or breeding. Example
Narrow sense Heritability (h 2 or H N) focuses specifically on the ratio of additive variance (V A) to total phenotypic variance (V P), or: h 2 = V A / V P.. In the study of Heritability, Additive genetic effects are of particular interest in the fields of Conservation, and Artificial selection.
Ronald Fisher in 1913. Genetic variance is a concept outlined by the English biologist and statistician Ronald Fisher in his fundamental theorem of natural selection.In his 1930 book The Genetical Theory of Natural Selection, Fisher postulates that the rate of change of biological fitness can be calculated by the genetic variance of the fitness itself. [1]
Heritability is the proportion of variance caused by genetic factors of a specific trait in a population. [1] Falconer's formula is a mathematical formula that is used in twin studies to estimate the relative contribution of genetic vs. environmental factors to variation in a particular trait (that is, the heritability of the trait) based on ...
Narrow-sense heritability has been used also for predicting generally the results of artificial selection. In the latter case, however, the broadsense heritability may be more appropriate, as the whole attribute is being altered: not just adaptive capacity. Generally, advance from selection is more rapid the higher the heritability.
(Using a Plomin example, [38] for two traits with heritabilities of 0.60 & 0.23, =, and phenotypic correlation of r=0.45 the bivariate heritability would be =, so of the observed phenotypic correlation, 0.28/0.45 = 62% of it is due to correlative genetic effects, which is to say nothing of trait mutability in and of itself.)
Estimation in biology/animal breeding using standard ANOVA/REML methods of variance components such as heritability, shared-environment, maternal effects etc. typically requires individuals of known relatedness such as parent/child; this is often unavailable or the pedigree data unreliable, leading to inability to apply the methods or requiring strict laboratory control of all breeding (which ...
In computer science, truncation selection is a selection method used in evolutionary algorithms to select potential candidate solutions for recombination modeled after the breeding method. [2] In truncation selection the candidate solutions are ordered by fitness, and some proportion T% of the top fittest individuals are selected and reproduced ...