Search results
Results From The WOW.Com Content Network
The 21 proteinogenic α-amino acids found in eukaryotes, grouped according to their side chains' pK a values and charges carried at physiological pH (7.4) 2-, alpha-, or α-amino acids [21] have the generic formula H 2 NCHRCOOH in most cases, [b] where R is an organic substituent known as a "side chain". [22]
Amino acids are selected and carried to the ribosome by transfer RNA (tRNA) molecules, which enter the ribosome and bind to the messenger RNA chain via an anticodon stem loop. For each coding triplet ( codon ) in the messenger RNA, there is a unique transfer RNA that must have the exact anti-codon match, and carries the correct amino acid for ...
For a protein containing n amino acids, the number of high-energy phosphate bonds required to translate it is 4n-1. [9] The rate of translation varies; it is significantly higher in prokaryotic cells (up to 17–21 amino acid residues per second) than in eukaryotic cells (up to 6–9 amino acid residues per second). [10]
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
The following illustrates the structures and abbreviations of the 21 amino acids that are directly encoded for protein synthesis by the genetic code of eukaryotes. The structures given below are standard chemical structures, not the typical zwitterion forms that exist in aqueous solutions.
Post-translational modifications can occur on the amino acid side chains or at the protein's C-or N-termini. [1] They can expand the chemical set of the 22 amino acids by changing an existing functional group or adding a new one such as phosphate.
Another important eukaryotic initiation factor, eIF2, binds the tRNA containing methionine to the P site of the small ribosome. The P site is where the tRNA carrying an amino acid forms a peptide bond with the incoming amino acids and carries the peptide chain. The factor consists of an alpha, beta, and gamma subunit.
Ribosomal pausing can cause more non-canonical start codons without elF5A in eukaryotic cells. When there is a lack of elF5A in the eukaryotic cell, it can cause an increase in ribosomal pausing. [16] The ribosomal pausing process can also be used by amino acids to control translation. [10]