Search results
Results From The WOW.Com Content Network
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
Queues provide services in computer science, transport, and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer. Another usage of queues is in the implementation of breadth-first search.
The Lee algorithm is one possible solution for maze routing problems based on breadth-first search. It always gives an optimal solution, if one exists, but is slow and requires considerable memory. It always gives an optimal solution, if one exists, but is slow and requires considerable memory.
it uses a stack instead of a queue, and; it delays checking whether a vertex has been discovered until the vertex is popped from the stack rather than making this check before adding the vertex. If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs ...
The wavefront expansion algorithm is a specialized potential field path planner with breadth-first search to avoid local minima. [1] [2] It uses a growing circle around the robot. The nearest neighbors are analyzed first and then the radius of the circle is extended to distant regions. [3]
The algorithm is called lexicographic breadth-first search because the order it produces is an ordering that could also have been produced by a breadth-first search, and because if the ordering is used to index the rows and columns of an adjacency matrix of a graph then the algorithm sorts the rows and columns into lexicographical order.