Search results
Results From The WOW.Com Content Network
The chance of fissioning on absorption of a thermal neutron is about 92%; the capture-to-fission ratio of 233 U, therefore, is about 1:12 – which is better than the corresponding capture vs. fission ratios of 235 U (about 1:6), or 239 Pu or 241 Pu (both about 1:3).
The fissile isotope uranium-235 fuels most nuclear reactors.When 235 U absorbs a thermal neutron, one of two processes can occur.About 85.5% of the time, it will fission; about 14.5% of the time, it will not fission, instead emitting gamma radiation and yielding 236 U. [1] [2] Thus, the yield of 236 U per 235 U+n reaction is about 14.5%, and the yield of fission products is about 85.5%.
For both thermal neutrons and fast neutrons, the capture-to-fission ratio of uranium-233 is smaller than those of the other two major fissile fuels, uranium-235 and plutonium-239. [ 3 ] Fissile material
Because the fission-to-capture ratio of high energy or fast neutrons changes to favour fission for almost all of the actinides, including 238 92 U, fast reactors could use all of them for fuel. All actinides can undergo neutron induced fission with unmoderated or fast neutrons.
A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235 U and especially 239 Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides ...
Intermediate-energy neutrons have poorer fission/capture ratios than either fast or thermal neutrons for most fuels. An exception is the uranium-233 of the thorium cycle, which has a good fission/capture ratio at all neutron energies.
It so happens that the neutron cross-section of many actinides decreases with increasing neutron energy, but the ratio of fission to simple activation (neutron capture) changes in favour of fission as the neutron energy increases. Thus with a sufficiently high neutron energy, it should be possible to destroy even curium without the generation ...
Its (fission) nuclear cross section for slow thermal neutron is about 504.81 barns. For fast neutrons it is on the order of 1 barn. At thermal energy levels, about 5 of 6 neutron absorptions result in fission and 1 of 6 result in neutron capture forming uranium-236. [31] The fission-to-capture ratio improves for faster neutrons.