When.com Web Search

  1. Ads

    related to: point plane line drawing geometry examples

Search results

  1. Results From The WOW.Com Content Network
  2. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    This image line is perpendicular to every line of the plane which passes through the origin, in particular the original line (point of the projective plane). All lines that are perpendicular to the original line at the origin lie in the unique plane which is orthogonal to the original line, that is, the image plane under the association.

  3. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    (x 0, y 0, z 0) is any point on the line. a, b, and c are related to the slope of the line, such that the direction vector (a, b, c) is parallel to the line. Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector.

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    Similarly in 3 dimensions, the duality relation holds between points and planes, allowing any theorem to be transformed by swapping point and plane, is contained by and contains. More generally, for projective spaces of dimension N, there is a duality between the subspaces of dimension R and dimension N − R − 1.

  5. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    As any line in this extension of σ corresponds to a plane through O, and since any pair of such planes intersects in a line through O, one can conclude that any pair of lines in the extension intersect: the point of intersection lies where the plane intersection meets σ or the line at infinity. Thus the axiom of projective geometry, requiring ...

  6. Point at infinity - Wikipedia

    en.wikipedia.org/wiki/Point_at_infinity

    The real line with the point at infinity; it is called the real projective line. In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane.

  7. Point–line–plane postulate - Wikipedia

    en.wikipedia.org/wiki/Pointlineplane_postulate

    Number line assumption. Every line is a set of points which can be put into a one-to-one correspondence with the real numbers. Any point can correspond with 0 (zero) and any other point can correspond with 1 (one). Dimension assumption. Given a line in a plane, there exists at least one point in the plane that is not on the line. Given a plane ...

  8. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    The points with coordinates [x : y : 1] are the usual real plane, called the finite part of the projective plane, and points with coordinates [x : y : 0], called points at infinity or ideal points, constitute a line called the line at infinity. (The homogeneous coordinates [0 : 0 : 0] do not represent any point.)

  9. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)