When.com Web Search

  1. Ad

    related to: spherical geometry facts

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.

  3. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    Many theorems from classical geometry hold true for spherical geometry as well, but not all do because the sphere fails to satisfy some of classical geometry's postulates, including the parallel postulate. In spherical trigonometry, angles are defined between great circles. Spherical trigonometry differs from ordinary trigonometry in

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  6. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry are the natural analog of straight lines in Euclidean space. For any pair of distinct non-antipodal points on the sphere, there is a unique great circle passing through both. (Every great circle through any point also passes through its antipodal ...

  7. Ibn Mu'adh al-Jayyani - Wikipedia

    en.wikipedia.org/wiki/Ibn_Mu'adh_al-Jayyani

    Al-Jayyānī wrote The book of unknown arcs of a sphere, which is considered "the first treatise on spherical trigonometry", [5] although spherical trigonometry in its ancient Hellenistic form was dealt with by earlier mathematicians such as Menelaus of Alexandria, whose treatise the Spherics included Menelaus' theorem, [6] still a basic tool for solving spherical geometry problems in Al ...

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    In spherical geometry, a spherical circle (often shortened to circle) is the locus of points on a sphere at constant spherical distance (the spherical radius) from a given point on the sphere (the pole or spherical center).