Search results
Results From The WOW.Com Content Network
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.
A crossed square is a faceting of the square, a self-intersecting polygon created by removing two opposite edges of a square and reconnecting by its two diagonals. It has half the symmetry of the square, Dih 2, order 4. It has the same vertex arrangement as the square, and is vertex-transitive.
Simple polygons are sometimes called Jordan polygons, because they are Jordan curves; the Jordan curve theorem can be used to prove that such a polygon divides the plane into two regions. [8] Indeed, Camille Jordan 's original proof of this theorem took the special case of simple polygons (stated without proof) as its starting point. [ 9 ]
A uniform polyhedron has regular polygons as faces, such that for every two vertices there is an isometry mapping one into the other (just as there is for a regular polygon). A quasiregular polyhedron is a uniform polyhedron which has just two kinds of face alternating around each vertex.
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.
Note that the two opposite sides in these formulas are not the two that the bimedian connects. In a convex quadrilateral, there is the following dual connection between the bimedians and the diagonals: [29] The two bimedians have equal length if and only if the two diagonals are perpendicular.
Some lines containing interior points of a concave polygon intersect its boundary at more than two points. [4] Some diagonals of a concave polygon lie partly or wholly outside the polygon. [4] Some sidelines of a concave polygon fail to divide the plane into two half-planes one of which entirely contains the polygon. None of these three ...