Search results
Results From The WOW.Com Content Network
In mathematics, like terms are summands in a sum that differ only by a numerical factor. [1] Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients.
This definition of exponentiation with negative exponents is the only one that allows extending the identity + = to negative exponents (consider the case =). The same definition applies to invertible elements in a multiplicative monoid , that is, an algebraic structure , with an associative multiplication and a multiplicative identity denoted 1 ...
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
This should be distinguished from the names used for the number of variables, the arity, which are based on Latin distributive numbers, and end in -ary. For example, a degree two polynomial in two variables, such as + +, is called a "binary quadratic": binary due to two variables, quadratic due to degree two.
Multiplication symbols are usually omitted, and implied, when there is no operator between two variables or terms, or when a coefficient is used. For example, 3 × x 2 is written as 3x 2, and 2 × x × y is written as 2xy. [5] Sometimes, multiplication symbols are replaced with either a dot or center-dot, so that x × y is written as either x.
The third power of the trinomial a + b + c is given by (+ +) = + + + + + + + + +. This can be computed by hand using the distributive property of multiplication over addition and combining like terms, but it can also be done (perhaps more easily) with the multinomial theorem.
The definition of exponentiation can also be given by transfinite recursion on the exponent β. When the exponent β = 0, ordinary exponentiation gives α 0 = 1 for any α. For β > 0, the value of α β is the smallest ordinal greater than or equal to α δ · α for all δ < β. Writing the successor and limit ordinals cases separately: α 0 = 1.