When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The Haar measure for SO(3) in Euler angles is given by the Hopf angle parametrisation of SO(3), ⁡, [5] where (,) parametrise , the space of rotation axes. For example, to generate uniformly randomized orientations, let α and γ be uniform from 0 to 2 π , let z be uniform from −1 to 1, and let β = arccos( z ) .

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The rotation vector is useful in some contexts, as it represents a three-dimensional rotation with only three scalar values (its components), representing the three degrees of freedom. This is also true for representations based on sequences of three Euler angles (see below). If the rotation angle θ is zero, the axis is not uniquely defined ...

  4. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  5. Angular displacement - Wikipedia

    en.wikipedia.org/wiki/Angular_displacement

    Figure 2: A rotation represented by an Euler axis and angle. In three dimensions, angular displacement is an entity with a direction and a magnitude. The direction specifies the axis of rotation, which always exists by virtue of the Euler's rotation theorem; the magnitude specifies the rotation in radians about that axis (using the right-hand ...

  6. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...

  7. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    The quaternions q, r, and s are used to represent rotations with axes of rotation w′, u′, and v′, respectively, and angles of rotation 2a, 2b, and 2c, respectively. Because these are double angles, each of q, r, and s represents two applications of the rotation implied by an edge of the spherical triangle. From the definitions, it follows ...

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Case 1: three sides given (SSS). The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA). The sine rule gives C and ...

  9. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...