Search results
Results From The WOW.Com Content Network
In the end, the model was replaced by the modern quantum-mechanical treatment of the hydrogen atom, which was first given by Wolfgang Pauli in 1925, using Heisenberg's matrix mechanics. The current picture of the hydrogen atom is based on the atomic orbitals of wave mechanics , which Erwin Schrödinger developed in 1926.
In the end, the model was replaced by the modern quantum-mechanical treatment of the hydrogen atom, which was first given by Wolfgang Pauli in 1925, using Heisenberg's matrix mechanics. The current picture of the hydrogen atom is based on the atomic orbitals of wave mechanics, which Erwin Schrödinger developed in 1926.
The Schrödinger equation is the standard quantum-mechanics model; it allows one to calculate the stationary states and also the time evolution of quantum systems. Exact analytical answers are available for the nonrelativistic hydrogen atom. Before we go to present a formal account, here we give an elementary overview.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The idea of quantum field theory began in the late 1920s with British physicist Paul Dirac, when he attempted to quantize the energy of the electromagnetic field; just as in quantum mechanics the energy of an electron in the hydrogen atom was quantized. Quantization is a procedure for constructing a quantum theory starting from a classical theory.
In Schrödinger's quantum-mechanical theory of the hydrogen atom, the Bohr radius is the value of the radial coordinate for which the radial probability density of the electron position is highest. The expected value of the radial distance of the electron, by contrast, is 3 2 a 0 {\displaystyle {\tfrac {3}{2}}a_{0}} .
Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics.
The hydrogen atom in a spherical cavity with Dirichlet boundary conditions [4] The Mie potential [5] The Hooke's atom; The Morse potential; The Spherium atom; Zero range interaction in a harmonic trap [6] Multistate Landau–Zener models [7] The Luttinger liquid (the only exact quantum mechanical solution to a model including interparticle ...