Search results
Results From The WOW.Com Content Network
Ultrasound Localization Microscopy (ULM) is an advanced ultrasound imaging technique. By localizing microbubbles, ULM overcomes the physical limit of diffraction, achieving sub-wavelength level resolution and qualifying as a super-resolution technique. [1] [2] ULM is primarily utilized in vascular imaging.
Functional ultrasound imaging (fUS) is a medical ultrasound imaging technique for detecting or measuring changes in neural activities or metabolism, such as brain activity loci, typically through measuring hemodynamic (blood flow) changes.
English: The main applications and features of functional ultrasound (fUS) imaging. fUS imaging provides (i) a compatibility with a wide range of animal models for preclinical studies, (ii) the ability to image awake and freely moving animals, (iii) possibility to combine with super-resolution ultrasound localization microscopy, (iv) possible extension to 3D imaging, (v) functional ...
Ultrasound image showing the liver, gallbladder and common bile duct. Medical ultrasound uses high frequency broadband sound waves in the megahertz range that are reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however.
Photo-activated localization microscopy (PALM or FPALM) [1] [2] and stochastic optical reconstruction microscopy (STORM) [3] are widefield (as opposed to point scanning techniques such as laser scanning confocal microscopy) fluorescence microscopy imaging methods that allow obtaining images with a resolution beyond the diffraction limit.
In comparison to other super-resolution microscopy techniques such as STORM or PALM that rely on single-molecule localization and hence only allow one active molecule per diffraction-limited area (DLA) and timepoint, [1] [2] SOFI does not necessitate a controlled photoswitching and/ or photoactivation as well as long imaging times.
Functional imaging (or physiological imaging) is a medical imaging technique of detecting or measuring changes in metabolism, blood flow, regional chemical composition, and absorption.
Multi-spectral. MSOT collects images at multiple wavelengths and resolves the spectral signatures in each voxel imaged, making it a multi-spectral method. Typically, MSOT is used to generate three images: one anatomical image at a single wavelength, one functional image resolving oxy- and deoxy-hemoglobin concentrations, and a third image resolving additional target photoabsorber(s).