When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Perfect collinearity is typically caused by including redundant variables in a regression. For example, a dataset may include variables for income, expenses, and savings. However, because income is equal to expenses plus savings by definition, it is incorrect to include all 3 variables in a regression simultaneously.

  3. Moderation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Moderation_(statistics)

    This is the problem of multicollinearity in moderated regression. Multicollinearity tends to cause coefficients to be estimated with higher standard errors and hence greater uncertainty. Mean-centering (subtracting raw scores from the mean) may reduce multicollinearity, resulting in more interpretable regression coefficients.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a simple univariate regression may propose (,) = +, suggesting that the researcher believes = + + to be a reasonable approximation for the statistical process generating the data. Once researchers determine their preferred statistical model , different forms of regression analysis provide tools to estimate the parameters β ...

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Example of a cubic polynomial regression, which is a type of linear regression. Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data.

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Dummy variable (statistics) - Wikipedia

    en.wikipedia.org/wiki/Dummy_variable_(statistics)

    A graph showing the gender wage gap. In regression analysis, a dummy variable (also known as indicator variable or just dummy) is one that takes a binary value (0 or 1) to indicate the absence or presence of some categorical effect that may be expected to shift the outcome. [1]

  8. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Perfect multicollinearity refers to a situation in which k (k ≥ 2) explanatory variables in a multiple regression model are perfectly linearly related, according to = + + + + (), for all observations i. In practice, we rarely face perfect multicollinearity in a data set.

  9. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [ 2 ]