Ads
related to: pulsating sprinkler vs oscillating rotating fan for motor system and control
Search results
Results From The WOW.Com Content Network
A permanent magnet synchronous motor and reluctance motor requires a control system for operating (VFD or servo drive). There is a large number of control methods for synchronous machines, selected depending on the construction of the electric motor and the scope. Control methods can be divided into: [21] [22] Scalar control. V/f control ...
The rotating magnetic field is the key principle in the operation of induction machines.The induction motor consists of a stator and rotor.In the stator a group of fixed windings are so arranged that a two phase current, for example, produces a magnetic field which rotates at an angular velocity determined by the frequency of the alternating current.
Most pulsejet engines use independent intake and exhaust pipes. A physically simpler design combines the intake and exhaust aperture. This is possible due to the oscillating behaviour of a pulse engine. One aperture can act as exhaust pipe during the high-pressure phase of the work cycle and as intake during the aspiration phase.
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
The cam can be seen as a device that converts rotational motion to reciprocating (or sometimes oscillating) motion. [clarification needed] [3] A common example is the camshaft of an automobile, which takes the rotary motion of the engine and converts it into the reciprocating motion necessary to operate the intake and exhaust valves of the cylinders.
In one arrangement, the motor has an ordinary stator. A squirrel-cage rotor connected to the output shaft rotates within the stator at slightly less than the rotating field from the stator. Within the squirrel-cage rotor is a freely rotating permanent magnet rotor, which is locked in with rotating field from the stator.