Search results
Results From The WOW.Com Content Network
For example, the inner product of a polar vector and an axial vector resulting from the cross product in the triple product should result in a pseudoscalar, a result which is more obvious if the calculation is framed as the exterior product of a vector and bivector. They generalise to other dimensions; in particular bivectors can be used to ...
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
Since the vector term of the vector bivector product the name dot product is zero when the vector is perpendicular to the plane (bivector), and this vector, bivector "dot product" selects only the components that are in the plane, so in analogy to the vector-vector dot product this name itself is justified by more than the fact this is the non ...
In mathematics, a bivector is the vector part of a biquaternion. For biquaternion q = w + xi + yj + zk, w is called the biscalar and xi + yj + zk is its bivector part.
A bivector is an element of the antisymmetric tensor product of a tangent space with itself. In geometric algebra , also, a bivector is a grade 2 element (a 2-vector) resulting from the wedge product of two vectors, and so it is geometrically an oriented area , in the same way a vector is an oriented line segment.
In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, while the exterior product of three vectors is a trivector. A bivector is an oriented plane element and a trivector is an oriented volume element, in the same way that a vector is an oriented line element. Given vectors a, b and c, the product
A bivector field is called nondegenerate if ♯: is a vector bundle isomorphism. Nondegenerate Poisson bivector fields are actually the same thing as symplectic manifolds ( M , ω ) {\displaystyle (M,\omega )} .
Examples of geometric algebras applied in physics include the spacetime algebra (and the less common algebra of physical space). Geometric calculus , an extension of GA that incorporates differentiation and integration , can be used to formulate other theories such as complex analysis and differential geometry , e.g. by using the Clifford ...