Search results
Results From The WOW.Com Content Network
Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain
As the grain is bent further, more and more dislocations must be introduced to accommodate the deformation resulting in a growing wall of dislocations – a low-angle boundary. The grain can now be considered to have split into two sub-grains of related crystallography but notably different orientations.
Two main mechanisms for altering grain boundaries have been defined. The first is the process by which quartz softens as temperature increases, providing a means for internal stress reduction by migration of dislocations in the crystal lattice, known as dislocation creep. These dislocations concentrate into walls, forming new grain boundaries.
The main problem with this theory is that the stored energy due to dislocations is very low (0.1–1 J m −3) while the energy of a grain boundary is quite high (~0.5 J m −3). Calculations based on these values found that the observed nucleation rate was greater than the calculated one by some impossibly large factor (~10 50 ).
The pile-up of dislocations at grain boundaries and Orowan loops around strong precipitates are two main sources of these back stresses. When the strain direction is reversed, dislocations of the opposite sign can be produced from the same source that produced the slip-causing dislocations in the initial direction.
There are mainly two types of grain boundary sliding: Rachinger sliding, [2] and Lifshitz sliding. [3] Grain boundary sliding usually occurs as a combination of both types of sliding. Boundary shape often determines the rate and extent of grain boundary sliding. [4] Grain boundary sliding is a motion to prevent intergranular cracks from forming.
In metallurgy, materials science and structural geology, subgrain rotation recrystallization is recognized as an important mechanism for dynamic recrystallisation.It involves the rotation of initially low-angle sub-grain boundaries until the mismatch between the crystal lattices across the boundary is sufficient for them to be regarded as grain boundaries.
Bulging recrystallization often occurs along boundaries of old grains at triple junctions. At high temperatures, the growing grain has a lower dislocation density than the grain(s) consumed, and the grain boundary sweeps through the neighboring grains to remove dislocations by high-temperature grain-boundary migration crystallization.