When.com Web Search

  1. Ads

    related to: bi vectors in geometry worksheet kuta pdf solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    Parallel plane segments with the same orientation and area corresponding to the same bivector a ∧ b. [1]In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors.

  3. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    The fundamental difference is that GA provides a new product of vectors called the "geometric product". Elements of GA are graded multivectors: scalars are grade 0, usual vectors are grade 1, bivectors are grade 2 and the highest grade (3 in the 3D case) is traditionally called the pseudoscalar and designated .

  4. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The three vectors spanning a parallelepiped have triple product equal to its volume. (However, beware that the direction of the arrows in this diagram are incorrect.) In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, while the exterior product of three vectors is a trivector. A bivector is an oriented ...

  5. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)

  6. Universal geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Universal_geometric_algebra

    Some r-vectors are scalars (r = 0), vectors (r = 1) and bivectors (r = 2). One may generate a finite-dimensional GA by choosing a unit pseudoscalar (I). The set of all vectors that satisfy = is a vector space. The geometric product of the vectors in this vector space then defines the GA, of which I is a member.

  7. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  8. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  9. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors.Geometric algebra is built out of two fundamental operations, addition and the geometric product.