When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Grain boundary strengthening - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_strengthening

    Grain boundary engineering involves manipulating the grain boundary structure and energy to enhance mechanical properties. By controlling the interfacial energy, it is possible to engineer materials with desirable grain boundary characteristics, such as increased interfacial area, higher grain boundary density, or specific grain boundary types ...

  3. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Nonmetallic impurities often aggregate at grain boundaries and have the ability to impact the strength of materials by changing the grain boundary energy. Rupert et al. [26] conducted first-principles simulations to study the impact of the addition of common nonmetallic impurities on Σ5 (310) grain boundary energy in Cu. They claimed that the ...

  4. Hardening (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Hardening_(metallurgy)

    The Hall–Petch method, or grain boundary strengthening, is to obtain small grains. Smaller grains increases the likelihood of dislocations running into grain boundaries after shorter distances, which are very strong dislocation barriers. In general, smaller grain size will make the material harder.

  5. Grain boundary - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary

    In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure , and tend to decrease the electrical and thermal conductivity of the material.

  6. Precipitation hardening - Wikipedia

    en.wikipedia.org/wiki/Precipitation_hardening

    Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel.

  7. Precipitate-free zone - Wikipedia

    en.wikipedia.org/wiki/Precipitate-free_zone

    Schematic of a precipitate free zone (PFZ) immediately adjacent to a grain boundary in a polycrystalline material. In materials science, a precipitate-free zone (PFZ) refers to microscopic localized regions around grain boundaries that are free of precipitates (solid impurities forced outwards from the grain during crystallization).

  8. Grain growth - Wikipedia

    en.wikipedia.org/wiki/Grain_growth

    Grain growth has long been studied primarily by the examination of sectioned, polished and etched samples under the optical microscope.Although such methods enabled the collection of a great deal of empirical evidence, particularly with regard to factors such as temperature or composition, the lack of crystallographic information limited the development of an understanding of the fundamental ...

  9. Grain boundary sliding - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_sliding

    There are mainly two types of grain boundary sliding: Rachinger sliding, [2] and Lifshitz sliding. [3] Grain boundary sliding usually occurs as a combination of both types of sliding. Boundary shape often determines the rate and extent of grain boundary sliding. [4] Grain boundary sliding is a motion to prevent intergranular cracks from forming.