When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Meteoroid - Wikipedia

    en.wikipedia.org/wiki/Meteoroid

    A meteorite is a portion of a meteoroid or asteroid that survives its passage through the atmosphere and hits the ground without being destroyed. [22] Meteorites are sometimes, but not always, found in association with hypervelocity impact craters; during energetic collisions, the entire impactor may be vaporized, leaving no meteorites.

  3. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    In this context, "speed of light" really refers to the speed supremum of information transmission or of the movement of ordinary (nonnegative mass) matter, locally, as in a classical vacuum. Thus, a more accurate description would refer to c 0 {\displaystyle c_{0}} rather than the speed of light per se.

  6. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The formula for the velocity of a body in a circular orbit at distance r from the center of gravity of mass M can be derived as follows: Centrifugal acceleration matches the acceleration due to gravity.

  8. Atmospheric entry - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_entry

    An approximate rule of thumb for shock wave standoff distance is 0.14 times the nose radius. One can estimate the time of travel for a gas molecule from the shock wave to the stagnation point by assuming a free stream velocity of 7.8 km/s and a nose radius of 1 meter, i.e., time of travel is about 18 microseconds.

  9. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    According to the special theory of relativity, c is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. [2] [3] [4] All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other ...