Ad
related to: quantum break vs control variable level of measurement chart
Search results
Results From The WOW.Com Content Network
Quantum state tomography is a process by which, given a set of data representing the results of quantum measurements, a quantum state consistent with those measurement results is computed. [50] It is named by analogy with tomography , the reconstruction of three-dimensional images from slices taken through them, as in a CT scan .
A hidden variables theory which is superdeterministic can thus fulfill Bell's notion of local causality and still violate the inequalities derived from Bell's theorem. [1] This makes it possible to construct a local hidden-variable theory that reproduces the predictions of quantum mechanics, for which a few toy models have been proposed.
A quantum limit in physics is a limit on measurement accuracy at quantum scales. [1] Depending on the context, the limit may be absolute (such as the Heisenberg limit), or it may only apply when the experiment is conducted with naturally occurring quantum states (e.g. the standard quantum limit in interferometry) and can be circumvented with advanced state preparation and measurement schemes.
Unlike measurement based feedback, where the quantum state is measured (causing it to collapse) and control is conditioned on the classical measurement outcome, coherent feedback maintains the full quantum state and implements deterministic, non-destructive operations on the state, using fully quantum devices.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.
More formally, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the product of the accuracy of certain related pairs of measurements on a quantum system, such as position, x, and momentum, p. [1] Such paired-variables are known as complementary variables or canonically conjugate variables.
Quantum indeterminacy is often understood as information (or lack of it) whose existence we infer, occurring in individual quantum systems, prior to measurement. Quantum randomness is the statistical manifestation of that indeterminacy, witnessable in results of experiments repeated many times. However, the relationship between quantum ...