When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    For example, an angle of 30 degrees is already a reference angle, and an angle of 150 degrees also has a reference angle of 30 degrees (180° − 150°). Angles of 210° and 510° correspond to a reference angle of 30 degrees as well (210° mod 180° = 30°, 510° mod 180° = 150° whose supplementary angle is 30°).

  3. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The sum of the internal angle and the external angle on the same vertex is π radians (180°). The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180 ...

  4. Degree (angle) - Wikipedia

    en.wikipedia.org/wiki/Degree_(angle)

    A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]

  5. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.

  6. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle intercepting the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements.

  7. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  8. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    So, in the picture, the size of angle ACD equals the size of angle ABC plus the size of angle CAB. The HSEAT is logically equivalent to the Euclidean statement that the sum of angles of a triangle is 180°. If it is known that the sum of the measures of the angles in a triangle is 180°, then the HSEAT is proved as follows:

  9. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.