Search results
Results From The WOW.Com Content Network
A nerve signal travels down the upper motor neuron until it synapses with the lower motor neuron in the spinal cord. Then, the lower motor neuron conducts the nerve signal to the spinal root where efferent nerve fibers carry the motor signal toward the target muscle. The descending tracts are composed of white matter.
Spinal nerves transmit external sensations via sensory nerves to the brain through the spinal cord. [3] The stimulus can come from exteroreceptors outside the body, for example those that detect light and sound, or from interoreceptors inside the body, for example those that are responsive to blood pressure or the sense of body position .
A spinal nerve is a mixed nerve, which carries motor, sensory, and autonomic signals between the spinal cord and the body. In the human body there are 31 pairs of spinal nerves, one on each side of the vertebral column. [1] [2] These are grouped into the corresponding cervical, thoracic, lumbar, sacral and coccygeal regions of the spine. [1]
Efferent nerve fibers carry motor nerve signals from the anterior horn to the muscles Effector muscle innervated by the efferent nerve fiber carries out the response. A reflex arc, then, is the pathway followed by nerves which (a.) carry sensory information from the receptor to the spinal cord, and then (b.) carry the response generated by the ...
Glutamate released from the upper motor neurons triggers depolarization in the lower motor neurons in the anterior grey column, which in turn causes an action potential to propagate the length of the axon to the neuromuscular junction where acetylcholine is released to carry the signal across the synaptic cleft to the postsynaptic receptors of the muscle cell membrane, signaling the muscle to ...
In the abdomen, general visceral afferent fibers usually accompany sympathetic efferent fibers. This means that a signal traveling in an afferent fiber will begin at sensory receptors in the afferent fiber's target organ, travel up to the ganglion where the sympathetic efferent fiber synapses, continue back along a splanchnic nerve from the ganglion into the sympathetic trunk, move into a ...
(Neurons are the cells that send signals between your brain and the rest of your body.) Scientists used to think the cerebellum was specifically involved in coordinating movement and balance.
Afferent signals from spindles and tendon organs are integrated in the spinal cord, which then output muscle activation commands to muscle via alpha motoneurons. Because muscle spindles and tendon organs exhibit burst-like activity in response to rapid stretch, they play a vital role in reflexive perturbation responses.