Search results
Results From The WOW.Com Content Network
While this is strictly 24 hours and 1 second in conventional units, a digital clock of suitable capability level will most often display the leap second as 23:59:60 and not 24:00:00 before rolling over to 00:00:00 the next day, as though the last "minute" of the day were crammed with 61 seconds and not 60, and similarly the last "hour" 3601 s ...
50 microseconds – cycle time for highest human-audible tone (20 kHz). 50 microseconds – to read the access latency for a modern solid state drive which holds non-volatile computer data. [5] 100 microseconds (0.1 ms) – cycle time for frequency 10 kHz. 125 microseconds – common sampling interval for telephone audio (8000 samples/s). [6]
Earth-based: the day is based on the time it takes for the Earth to rotate on its own axis, as observed on a sundial [citation needed]. Units originally derived from this base include the week (seven days), and the fortnight (14 days). Subdivisions of the day include the hour (1/24 of a day), which is further subdivided into minutes and seconds ...
Metric time is the measure of time intervals using the metric system. The modern SI system defines the second as the base unit of time, and forms multiples and submultiples with metric prefixes such as kiloseconds and milliseconds. Other units of time – minute, hour, and day – are accepted for use with SI, but are not part of it
A millisecond (from milli-and second; symbol: ms) is a unit of time in the International System of Units equal to one thousandth (0.001 or 10 −3 or 1 / 1000) of a second [1] [2] or 1000 microseconds.
In some data communication standards, a time unit (TU) is equal to 1024 microseconds. [1] This unit of time was originally introduced in IEEE 802.11-1999 standard [2] and continues to be used in newer issues of the IEEE 802.11 standard. [1] In the 802.11 standards, periods of time are generally described as integral numbers of time units.
This process took a total of 0.02 seconds of CPU time (User + System). The reported System time is 0.00 seconds, indicating that the amount of System time used was less than the printed resolution of 0.01 seconds. Elapsed real time was 0.08 seconds. The following is the source code of the application nextPrimeNumber which was used in the above ...
A Gregorian year, which takes into account the 100 vs. 400 leap year exception rule of the Gregorian calendar, is 365.2425 days (the average length of a year over a 400–year cycle), resulting in 0.1 years being a period of 36.52425 days (3 155 695.2 seconds; 36 days, 12 hours, 34 minutes, 55.2 seconds).