Search results
Results From The WOW.Com Content Network
The hypothesis that a data set in a regression analysis follows the simpler of two proposed linear models that are nested within each other. Multiple-comparison testing is conducted using needed data in already completed F-test, if F-test leads to rejection of null hypothesis and the factor under study has an impact on the dependent variable. [1]
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
The earliest regression form was seen in Isaac Newton's work in 1700 while studying equinoxes, being credited with introducing "an embryonic linear aggression analysis" as "Not only did he perform the averaging of a set of data, 50 years before Tobias Mayer, but summing the residuals to zero he forced the regression line to pass through the ...
In multiple regression, the omnibus test is an ANOVA F test on all the coefficients, that is equivalent to the multiple correlations R Square F test. The omnibus F test is an overall test that examines model fit, thus failure to reject the null hypothesis implies that the suggested linear model is not significantly suitable to the data.
The null hypothesis of no explanatory value of the estimated regression is tested using an F-test. If the calculated F-value is found to be large enough to exceed its critical value for the pre-chosen level of significance, the null hypothesis is rejected and the alternative hypothesis, that the regression has explanatory power, is accepted ...
The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable.
The Breusch–Godfrey test is a test for autocorrelation in the errors in a regression model. It makes use of the residuals from the model being considered in a regression analysis, and a test statistic is derived from these. The null hypothesis is that there is no serial correlation of any order up to p. [3]
and then testing, by a means of an F-test whether through are zero. If the null-hypothesis that all γ {\displaystyle \gamma ~} coefficients are zero is rejected, then the model suffers from misspecification.