Ad
related to: mean of a function formula examples
Search results
Results From The WOW.Com Content Network
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
Intuitively, a mean of a function can be thought of as calculating the area under a section of a curve, and then dividing by the length of that section. This can be done crudely by counting squares on graph paper, or more precisely by integration. The integration formula is written as:
[note 2] For example, a "function from the reals to the reals" may refer to a real-valued function of a real variable whose domain is a proper subset of the real numbers, typically a subset that contains a non-empty open interval. Such a function is then called a partial function.
This formula is used in the Spearman–Brown prediction formula of classical test theory. This converges to ρ if n goes to infinity, provided that the average correlation remains constant or converges too. So for the variance of the mean of standardized variables with equal correlations or converging average correlation we have
For example, the log-normal function with such fits well with the size of secondarily produced droplets during droplet impact [56] and the spreading of an epidemic disease. [ 57 ] The value σ = 1 / 6 {\textstyle \sigma =1{\big /}{\sqrt {6}}} is used to provide a probabilistic solution for the Drake equation.
An example, which comes from a solution of the Euler–Tricomi equation of transonic gas dynamics, [61] is the rescaled Airy function / (/). Although using the Fourier transform, it is easy to see that this generates a semigroup in some sense—it is not absolutely integrable and so cannot define a semigroup in the above strong sense.
Classically, algebraic functions are defined by an algebraic equation, and transcendental functions (including those discussed above) are defined by some property that holds for them, such as a differential equation. For example, the exponential function is the function which is equal to its own derivative everywhere, and assumes the value 1 at ...
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...