When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization . Data normalization (or feature scaling ) includes methods that rescale input data so that the features have the same range, mean, variance, or other ...

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory via the probably approximately correct learning model. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the ...

  5. Glossary of computer science - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_computer_science

    Data science is a "concept to unify statistics, data analysis, machine learning and their related methods" in order to "understand and analyze actual phenomena" with data. [90] It employs techniques and theories drawn from many fields within the context of mathematics, statistics, information science, and computer science. data structure

  6. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  7. Surrogate model - Wikipedia

    en.wikipedia.org/wiki/Surrogate_model

    A surrogate model is an engineering method used when an outcome of interest cannot be easily measured or computed, so an approximate mathematical model of the outcome is used instead.

  8. Computational statistics - Wikipedia

    en.wikipedia.org/wiki/Computational_statistics

    Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods. It is the area of computational science (or scientific computing) specific to the mathematical science of statistics. This area is ...

  9. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]