Search results
Results From The WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
The beta particles emitted by the radioisotope destroys the associated thyroid tissue with little damage to surrounding tissues (more than 2.0 mm from the tissues absorbing the iodine). Due to similar destruction, 131 I is the iodine radioisotope used in other water-soluble iodine-labeled radiopharmaceuticals (such as MIBG) used therapeutically ...
Nuclear chemistry is the sub-field of ... (a linear first degree derivative equation, ... the release of iodine-131 in a serious power reactor accident could be ...
131 I, with a half-life of 8 days, is a hazard from nuclear fallout because iodine concentrates in the thyroid gland. See also Radiation effects from Fukushima Daiichi nuclear disaster#Iodine-131 and Downwinders#Nevada. In common with 89 Sr, 131 I is used for the treatment of cancer.
Chemical and physical data; Formula: C 27 H 45 ... or 19-iodocholesterol, also as iodocholesterol (131 I) ... is a derivative of cholesterol with an iodine atom in ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 25 February 2025. This article is about the chemical element. For other uses, see Iodine (disambiguation). Chemical element with atomic number 53 (I) Iodine, 53 I Iodine Pronunciation / ˈ aɪ ə d aɪ n, - d ɪ n, - d iː n / (EYE -ə-dyne, -din, -deen) Appearance lustrous metallic gray solid ...
Radioisotopes of hydrogen, carbon, phosphorus, sulfur, and iodine have been used extensively to trace the path of biochemical reactions. A radioactive tracer can also be used to track the distribution of a substance within a natural system such as a cell or tissue , [ 1 ] or as a flow tracer to track fluid flow .
129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.