Search results
Results From The WOW.Com Content Network
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
In computer science, a min-max heap is a complete binary tree data structure which combines the usefulness of both a min-heap and a max-heap, that is, it provides constant time retrieval and logarithmic time removal of both the minimum and maximum elements in it. [2]
extract-max (or extract-min): returns the node of maximum value from a max heap [or minimum value from a min heap] after removing it from the heap (a.k.a., pop [5]) delete-max (or delete-min): removing the root node of a max heap (or min heap), respectively; replace: pop root and push a new key. This is more efficient than a pop followed by a ...
The downward-moving node is swapped with the larger of its children in a max-heap (in a min-heap it would be swapped with its smaller child), until it satisfies the heap property in its new position. This functionality is achieved by the Max-Heapify function as defined below in pseudocode for an array-backed heap A of length length(A).
The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut. The optimization variant is known to be NP-Hard. The opposite problem, that of finding a minimum cut is known to be efficiently solvable via the Ford–Fulkerson algorithm.
Saturation arithmetic is a version of arithmetic in which all operations, such as addition and multiplication, are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum, it is set ("clamped") to the maximum; if it is below the minimum, it is clamped to the minimum. The name comes ...
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
Most obviously, the solutions to the maximum independent set problem, the maximum clique problem, and the minimum independent dominating problem must all be maximal independent sets or maximal cliques, and can be found by an algorithm that lists all maximal independent sets or maximal cliques and retains the ones with the largest or smallest size.