When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 combinations avoid consecutive rotations around the same axis (such as XXY) which would reduce the degrees of freedom that can be represented.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Since every 2-dimensional rotation can be represented by an angle φ, an arbitrary 3-dimensional rotation can be specified by an axis of rotation together with an angle of rotation about this axis. (Technically, one needs to specify an orientation for the axis and whether the rotation is taken to be clockwise or counterclockwise with respect to ...

  6. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  7. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  8. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    The rotation axis is obviously orthogonal to this plane, and passes through the center C of the sphere. Given that for a rigid body any movement that leaves an axis invariant is a rotation, this also proves that any arbitrary composition of rotations is equivalent to a single rotation around a new axis.

  9. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    The Earth showing its axis and plane of rotation, both inclined relative to the plane and perpendicular of Earth's orbit. Another example is the Earth's rotation. The axis of rotation is the line joining the North Pole and South Pole and the plane of rotation is the plane through the equator between the Northern and Southern Hemispheres.