Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only ...
A positive divisor of that is different from is called a proper divisor or an aliquot part of (for example, the proper divisors of 6 are 1, 2, and 3). A number that does not evenly divide but leaves a remainder is sometimes called an aliquant part of . An integer > whose only proper divisor is 1 is called a prime number. Equivalently, a prime ...
In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
Sociable numbers are the numbers in cyclic lists of numbers (with a length greater than 2) where each number is the sum of the proper divisors of the preceding number. For example, 1264460 ↦ 1547860 ↦ 1727636 ↦ 1305184 ↦ 1264460 ↦ … {\displaystyle 1264460\mapsto 1547860\mapsto 1727636\mapsto 1305184\mapsto 1264460\mapsto \dots } are ...
Numbers p and q like this can be computed with the extended Euclidean algorithm. gcd(a, 0) = | a |, for a ≠ 0, since any number is a divisor of 0, and the greatest divisor of a is | a |. [2] [5] This is usually used as the base case in the Euclidean algorithm. If a divides the product b⋅c, and gcd(a, b) = d, then a/d divides c.
For example, in base 10, the factors of 10 1 include 2, 5, and 10. Therefore, divisibility by 2, 5, and 10 only depend on whether the last 1 digit is divisible by those divisors. The factors of 10 2 include 4 and 25, and divisibility by those only depend on the last 2 digits.
In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.
Again, for example, if we begin with the number 42, this time as simply a positive integer, we have its binary representation 101010. This decodes to 2 0 · 3 1 · 5 0 · 7 1 · 11 0 · 13 1 = 3 × 7 × 13 = 273. Thus binary encoding of squarefree numbers describes a bijection between the nonnegative integers and the set of positive squarefree ...