When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  3. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement.

  4. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    The complement of A is the set of all elements (of U) that do not belong to A. It may be denoted A c or A′. In set-builder notation, = {:}. The complement may also be called the absolute complement to distinguish it from the relative complement below. Example: If the universal set is taken to be the set of integers, then the complement of the ...

  6. Complement (group theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(group_theory)

    In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that = = {:,} = {}. Equivalently, every element of G has a unique expression as a product hk where h ∈ H and k ∈ K.

  7. Closed set - Wikipedia

    en.wikipedia.org/wiki/Closed_set

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.

  8. Complement graph - Wikipedia

    en.wikipedia.org/wiki/Complement_graph

    The complement of an edgeless graph is a complete graph and vice versa. Any induced subgraph of the complement graph of a graph G is the complement of the corresponding induced subgraph in G. An independent set in a graph is a clique in the complement graph and vice versa. This is a special case of the previous two properties, as an independent ...

  9. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in .