Ads
related to: subject and predicate meaning examples math facts
Search results
Results From The WOW.Com Content Network
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic , atomic formulas are sometimes regarded as zero-place predicates. [ 1 ]
A predicate evaluates to true or false for an entity or entities in the domain of discourse. Consider the two sentences "Socrates is a philosopher" and "Plato is a philosopher". In propositional logic, these sentences themselves are viewed as the individuals of study, and might be denoted, for example, by variables such as p and q.
In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.
If "predicate variables" are only allowed to be bound to predicate letters of zero arity (which have no arguments), where such letters represent propositions, then such variables are propositional variables, and any predicate logic which allows second-order quantifiers to be used to bind such propositional variables is a second-order predicate ...
The following example in first-order logic (=) is a sentence. This sentence means that for every y, there is an x such that =. This sentence is true for positive real numbers, false for real numbers, and true for complex numbers. However, the formula
The predicate can be linked to the subject in two ways: either by affirming it or by denying it. [112] For example, the proposition "Socrates is not a cat" involves the denial of the predicate "cat" to the subject "Socrates". Using combinations of subjects and predicates, a great variety of propositions and syllogisms can be formed.
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
Left to right: tree structure of the term (n⋅(n+1))/2 and n⋅((n+1)/2) Given a set V of variable symbols, a set C of constant symbols and sets F n of n-ary function symbols, also called operator symbols, for each natural number n ≥ 1, the set of (unsorted first-order) terms T is recursively defined to be the smallest set with the following properties: [1]