Search results
Results From The WOW.Com Content Network
The longest diameter is called the major axis. Conjugate diameters are a pair of diameters where one is parallel to a tangent to the ellipse at the endpoint of the other diameter. The diameter of a circle is exactly twice its radius. However, this is true only for a circle, and only in the Euclidean metric.
The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.
The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as =, where G is the gravitational constant, M is the object mass, and c is the speed of light.
an object of diameter 1 AU (149 597 871 km) at a distance of 1 parsec (pc) Thus, the angular diameter of Earth's orbit around the Sun as viewed from a distance of 1 pc is 2″, as 1 AU is the mean radius of Earth's orbit. The angular diameter of the Sun, from a distance of one light-year, is 0.03″, and that of Earth 0.0003″. The angular ...
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
The above formula can be rearranged to solve for the circumference: = =. The ratio of the circle's circumference to its radius is equivalent to 2 π {\displaystyle 2\pi } . [ a ] This is also the number of radians in one turn .
Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...