When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A conventional way to indicate a repeating decimal is to place a bar (known as a vinculum) over the digits that repeat, for example 0. 789 = 0.789789789... For repeating patterns that begin immediately after the decimal point, the result of the conversion is the fraction with the pattern as a numerator, and the same number of nines as a ...

  4. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    where the repeating block is indicated by dots over its first and last terms. [2] If the initial non-repeating block is not present – that is, if k = -1, a 0 = a m and = [;,, …, ¯], the regular continued fraction x is said to be purely periodic.

  5. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A continued fraction is an expression of the form = + + + + + where the a n (n > 0) are the partial numerators, the b n are the partial denominators, and the leading term b 0 is called the integer part of the continued fraction.

  6. Simple continued fraction - Wikipedia

    en.wikipedia.org/wiki/Simple_continued_fraction

    The continued fraction representation for a real number is finite if and only if it is a rational number. In contrast, the decimal representation of a rational number may be finite, for example ⁠ 137 / 1600 ⁠ = 0.085625, or infinite with a repeating cycle, for example ⁠ 4 / 27 ⁠ = 0.148148148148...

  7. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    First, every nonzero number with a finite decimal notation (equivalently, endless trailing 0s) has a counterpart with trailing 9s. For example, 0.24999... equals 0.25, exactly as in the special case considered. These numbers are exactly the decimal fractions, and they are dense. [41] [9] Second, a comparable theorem applies in each radix or base.

  8. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions, but otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the appropriate power of two in the decimal base. For example:

  9. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".