When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured. The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not depend on the choice of measurement units). Thus, strain rate has dimension of inverse ...

  3. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a ...

  4. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    The minimum value of creep rate that is commonly applied to alloys is based on two norms: (1) the stress required to produce a creep rate of 0.1%/h × 10 −3 and (2) the stress required to produce a creep rate of 0.1%/h × 10 −4, which takes roughly about 11.5 years. The former standard has widely been used in the component design of turbine ...

  5. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  6. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components." [6]

  7. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo ...

  8. Viscous stress tensor - Wikipedia

    en.wikipedia.org/wiki/Viscous_stress_tensor

    Viscous stress tensor. The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point. The viscous stress tensor is formally similar to the elastic stress tensor (Cauchy tensor) that ...

  9. Compressive strength - Wikipedia

    en.wikipedia.org/wiki/Compressive_strength

    Compressive strength. Measuring the compressive strength of a steel drum. In mechanics, compressive strength (or compression strength) is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension (being pulled ...