Search results
Results From The WOW.Com Content Network
Survival analysis is a branch of statistics for analyzing the expected duration of time until one event occurs, such as death in biological organisms and failure in mechanical systems. This topic is called reliability theory , reliability analysis or reliability engineering in engineering , duration analysis or duration modelling in economics ...
Survival models relate the time that passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to the hazard rate .
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)
The log-logistic distribution provides one parametric model for survival analysis. Unlike the more commonly used Weibull distribution , it can have a non- monotonic hazard function : when β > 1 , {\displaystyle \beta >1,} the hazard function is unimodal (when β {\displaystyle \beta } ≤ 1, the hazard decreases monotonically).
This distribution can be used to analyze time-to-event data in biomedical and public health areas and normally called survival analysis. In engineering, the time-to-event analysis is referred to as reliability theory and in business and economics it is called duration analysis. Other fields may use different names for the same analysis.
Recurrent event analysis is a branch of survival analysis that analyzes the time until recurrences occur, such as recurrences of traits or diseases. Recurrent events are often analyzed in social sciences and medical studies, for example recurring infections, depressions or cancer recurrences.
In survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate of the control population.
Survival analysis is normally carried out using parametric models, semi-parametric models, non-parametric models to estimate the survival rate in clinical research. However recently Bayesian models [1] are also used to estimate the survival rate due to their ability to handle design and analysis issues in clinical research.