Search results
Results From The WOW.Com Content Network
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian system ) is called the pole , and the ray from the pole in the reference direction is the polar ...
For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...
There are however different coordinate systems for hyperbolic plane geometry. All are based around choosing a point (the origin) on a chosen directed line (the x-axis) and after that many choices exist. The Lobachevsky coordinates x and y are found by dropping a perpendicular onto the x-axis. x will be the label of the foot of the perpendicular.
The Cayley–Klein metrics provided working models of hyperbolic and elliptic metric geometries, as well as Euclidean geometry. Klein is responsible for the terms "hyperbolic" and "elliptic" (in his system he called Euclidean geometry parabolic, a term that generally fell out of use [16]). His influence has led to the current usage of the term ...
The polar coordinates used most commonly for the hyperbola are defined relative to the Cartesian coordinate system that has its origin in a focus and its x-axis pointing toward the origin of the "canonical coordinate system" as illustrated in the first diagram. In this case the angle is called true anomaly.
The blue path in this image is an example of a hyperbolic trajectory. A hyperbolic trajectory is depicted in the bottom-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red. The height of the kinetic energy decreases ...
Hyperbolic 3-manifold; Hyperbolic coordinates; Hyperbolic Dehn surgery; Hyperbolic functions; Hyperbolic group; Hyperbolic law of cosines; Hyperbolic manifold; Hyperbolic metric space; Hyperbolic motion; Hyperbolic space; Hyperbolic tree; Hyperbolic volume; Hyperbolization theorem; Hyperboloid model; Hypercycle (geometry) HyperRogue
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...